Everywhere Ramified Towers of Global Function Fields
نویسندگان
چکیده
We construct a tower of function fields F0 ⊂ F1 ⊂ . . . over a finite field such that every place of every Fi ramifies in the tower and lim genus(Fi)/[Fi : F0] <∞. We also construct a tower in which every place ramifies and limNFi/[Fi : F0] > 0, where NFi is the number of degree-1 places of Fi. These towers answer questions posed by Stichtenoth at Fq7.
منابع مشابه
Tamely Ramified Towers and Discriminant Bounds for Number Fields-II
The root discriminant of a number field of degree n is the nth root of the absolute value of its discriminant. Let R0(2m) be the minimal root discriminant for totally complex number fields of degree 2m, and put α0 = lim infmR0(2m). Define R1(m) to be the minimal root discriminant of totally real number fields of degree m and put α1 = lim infmR1(m). Assuming the Generalized Riemann Hypothesis, α...
متن کاملIwasawa Theory of Zp-Extensions over Global Function Fields
In this paper we study the Iwasawa theory of Zp-extensions of global function fields k over finite fields of characteristic p. When d = 1 we first show that Iwasawa invariants are well defined under the assumption that only finitely many primes are ramified in the extension, then we prove that the Iwasawa μ-invariant can be arbitrarily large for some extension of any given base field k. After g...
متن کاملTowers of Function Fields over Non-prime Finite Fields
Over all non-prime finite fields, we construct some recursive towers of function fields with many rational places. Thus we obtain a substantial improvement on all known lower bounds for Ihara’s quantity A(`), for ` = p with p prime and n > 3 odd. A modular interpretation of the towers is given as well.
متن کاملExplicit modular towers
We give a general recipe for explicitly constructing asymptotically optimal towers of modular curves such as {X0(l)}n>1. We illustrate the method by giving equations for eight towers with various geometric features. We conclude by observing that such towers are all of a specific recursive form and speculate that perhaps every tower of this form which attains the Drinfeld-Vlăduţ bound is modular...
متن کاملGalois Towers over Non-prime Finite Fields
In this paper we construct Galois towers with good asymptotic properties over any nonprime finite field F`; i.e., we construct sequences of function fields N = (N1 ⊂ N2 ⊂ · · · ) over F` of increasing genus, such that all the extensions Ni/N1 are Galois extensions and the number of rational places of these function fields grows linearly with the genus. The limits of the towers satisfy the same ...
متن کامل